Algebra - Übungszettel 8 (Abgabe: 11.12.19)

Aufgabe 1. Sei R ein kommutativer Ring und sei $S \subset R$ eine multiplikativ abgeschlossene Teilmenge. Zeige:

(1) Die Abbildung

$$\pi: R \longrightarrow S^{-1}R, \ r \mapsto \frac{r}{1}$$

ist ein wohldefinierter Ringhomomorphismus mit der Eigenschaft: für alle $s \in S$ gilt $\pi(s) \in (S^{-1}R)^*$.

(2) Für jeden Ringhomomorphismus $\varphi: R \to R'$, so dass für jedes $s \in S$ gilt $\varphi(s) \in (R')^*$, gibt es einen eindeutigen Ringhomomorphismus $\overline{\varphi}: S^{-1}R \to R'$ mit $\varphi = \overline{\varphi} \circ \pi$.

Aufgabe 2. (1) Bestimme alle irreduziblen Polynome vom Grad ≤ 4 in $\mathbb{F}_2[X]$.

(2) Zerlege $X^3 + X + 1$ in $\mathbb{F}_p[X]$ in irreduzible Faktoren für p = 2, 3, 5.

Aufgabe 3. Sei R ein kommutativer Ring, $S \subset R$ eine multiplikativ abgeschlossene Teilmenge, und $\pi: R \to S^{-1}R$ der Homomorphismus aus Aufgabe 1. Zeige:

- (1) Für jedes Primideal $J \subset S^{-1}R$ ist $\pi^{-1}(J) \subset R$ ein Primideal mit $S \cap \pi^{-1}(J) = \emptyset$.
- (2) Die Assoziation $J \mapsto \pi^{-1}(J)$ definiert eine Bijektion zwischen der Menge der Primideale von $S^{-1}R$ und der Menge der Primideale $I \subset R$ mit $I \cap S = \emptyset$.
- (3) Sei $P \subset R$ ein Primideal. Dann ist $S = R \setminus P$ multiplikativ abgeschlossen und der Ring der Brüche $S^{-1}R$ hat genau ein maximales Ideal (ist also lokal).

Aufgabe 4. (1) Sei $\mathbb{Z}[i] \subset \mathbb{C}$ der Teilring mit Elementen m+ni mit $m,n \in \mathbb{Z}$. Zeige: Der Ring $\mathbb{Z}[i]$ ist euklidisch bezüglich der Abbildung

$$\lambda : \mathbb{Z}[i] \setminus \{0\} \to \mathbb{N}, \ m+ni \mapsto m^2+n^2.$$

Folgere, dass $\mathbb{Z}[i]$ faktoriell ist.

(2) Der Ring $\mathbb{Z}[\sqrt{-5}] := \mathbb{Z}[X]/(X^2 + 5)$ ist nicht faktoriell. Tipp: Betrachte Faktorisierungen des Elements 6. Folgere, dass $\mathbb{Z}[\sqrt{-5}]$ kein Hauptidealring ist und finde ein explizites Beispiel eines Ideals welches kein Hauptideal ist.