Algebra - Übungszettel 3 (Abgabe: 06.11.19)

Aufgabe 1. Sei H die Menge der Quaternionen und betrachte die Untergruppe

$$Q_8 = \{\pm 1, \pm i, \pm j, \pm k\} \le \mathbb{H} \setminus \{0\}$$

bezüglich Quaternionenmultiplikation.

- (1) Zeichne das Gitter aller Untergruppen von Q_8 und kennzeichne welche Untergruppen konjugiert sind.
- (2) Bestimme die Konjugationsklassen von Q_8 und die Klassengleichung.

Aufgabe 2. Sei S_n die symmetrische Gruppe der Menge $\{1, 2, ..., n\}$. Jedes Element $\sigma \in S_n$ lässt sich schreiben als Produkt

$$\sigma = \sigma_1 \circ \sigma_2 \circ \cdots \circ \sigma_k$$

von paarweise disjunkten Zykeln σ_i der Länge $m_i \geq 2$. Hierbei interpretieren wir das neutrale Element e als "leeres" Produkt mit k = 0. Wir können annehmen, dass

$$m_1 > m_2 > \cdots > m_k$$

und nennen den k-Tupel

$$(m_1,\ldots,m_k)$$

den Zykeltyp von σ . Zeige: Elemente σ, σ' von S_n liegen genau dann in derselben Konjugationsklasse von S_n wenn sie denselben Zykeltyp haben.

Aufgabe 3. Sei S_4 die symmetrische Gruppe der Menge $\{1, 2, 3, 4\}$.

- (1) Zeichne das Gitter aller Untergruppen von S_4 und kennzeichne welche Untergruppen konjugiert sind.
- (2) Bestimme die Konjugationsklassen von S_4 und die Klassengleichung.

Aufgabe 4. Sei $n \geq 3$ und sei

$$D_n \leq \mathrm{GL}(2,\mathbb{R})$$

die von der Teilmenge

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} \cos(\frac{2\pi}{n}) & -\sin(\frac{2\pi}{n}) \\ \sin(\frac{2\pi}{n}) & \cos(\frac{2\pi}{n}) \end{pmatrix} \right\} \subset \operatorname{GL}(2, \mathbb{R})$$

erzeugte Untergruppe.

- (1) Zeige $|D_n| = 2n$.
- (2) Sei $\tau(n)$ die Anzahl von positiven Teilern von n und $\sigma(n)$ die Summe über alle positiven Teiler (z.B. gilt $\tau(6) = 4$ und $\sigma(6) = 12$). Zeige dass die Gruppe D_n genau $\tau(n) + \sigma(n)$ Untergruppen hat und bestimme diese.
- (3) Bestimme die Konjugationsklassen von D_n und die Klassengleichung.