Algebra - Übungszettel 12 (Abgabe: 22.01.20)

Aufgabe 1. Sei L/\mathbb{Q} ein Zerfällungskörper des Polynoms $X^3 - 7 \in \mathbb{Q}[X]$.

- (a) Zeige, dass die Galoisgruppe $G(L/\mathbb{Q})$ isomorph zur symmetrischen Gruppe S_3 ist.
- (b) Finde ein $\alpha \in L$ mit $L = \mathbb{Q}(\alpha)$.
- (c) Bestimme alle Untergruppen von $G(L/\mathbb{Q})$ und die zugehörigen Zwischenkörper von L/\mathbb{Q} .
- Lösung. (a) Dies lässt sich sofort an der Diskriminante ablesen, wir hatten diese aber noch nicht eingeführt, als die Aufgabe gestellt wurde. Also direkt: Das Polynom $f(X) = X^3 7$ ist irreduzibel, da es keine Nullstelle in $\mathbb Q$ hat. Die Nullstellen von f in $\mathbb C$ sind $\alpha_1 = \sqrt[3]{7}$, $\alpha_2 = \zeta\sqrt[3]{7}$, und $\alpha_3 = \zeta^2\sqrt[3]{7}$ wobei ζ eine primitive dritte Einheitswurzel ist. Damit ist der Zerfällungskörper gegeben durch $L = \mathbb Q(\sqrt[3]{7}, \zeta) \subset \mathbb C$. Die Einheitswurzel ζ ist eine Nullstelle des Polynoms $X^2 + X + 1$, welches in $\mathbb R$ und damit auch in $\mathbb Q(\sqrt[3]{7})$ keine Nullstelle hat, also ein irreduzibles Polynom in $\mathbb Q(\sqrt[3]{7})[X]$ ist. Wir folgern, dass die Erweiterungen $\mathbb Q(\sqrt[3]{7})/\mathbb Q$ und $L/\mathbb Q(\sqrt[3]{7})$ primitiv sind, mit $[\mathbb Q(\sqrt[3]{7}):\mathbb Q]=3$ und $[L:\mathbb Q(\sqrt[3]{7})]=2$. Also gilt $[L:\mathbb Q]=6$. Weiterhin operiert die Galoisgruppe $G(L/\mathbb Q)$ treu auf den Nullstellen von f lässt sich also mit einer Untergruppe von S_3 identifieren. Da $|G(L/\mathbb Q)|=[L:\mathbb Q]$ gilt muss dann aber gelten $G(L/\mathbb Q)\cong S_3$.
 - (b) Wir wissen aus vorherigem Übungszettel: Für alle bis auf endlich viele $\lambda \in K$, gilt $L = \mathbb{Q}(\sqrt[3]{7} + \lambda \zeta)$. Wir probieren $\lambda = 1$. Um zu zeigen, dass $\alpha := \sqrt[3]{7} + \zeta$ in keinem echten Teilkörper von L enthalten ist, genügt es zu zeigen, dass α von keinem id $\neq \sigma \in G(L/\mathbb{Q})$ fixiert wird (Galoiskorrespondenz). Wir identifizieren die Galoisgruppe mit S_3 und rechnen

$$(12).\alpha = \zeta\sqrt[3]{7} + \zeta^2$$

$$(13).\alpha = \zeta^2\sqrt[3]{7} + \zeta^2$$

$$(23).\alpha = \sqrt[3]{7} + \zeta^2$$

$$(123).\alpha = \zeta\sqrt[3]{7} + \zeta$$

$$(132).\alpha = \zeta^2\sqrt[3]{7} + \zeta$$

Die Tatsache, dass keines dieser Elemente mit α übereinstimmt lässt sich zum Beispiel leicht nachvollziehen, indem man verwendet, dass

$$1, \sqrt[3]{7}, \sqrt[3]{7}^2, \zeta, \zeta\sqrt[3]{7}, \zeta\sqrt[3]{7}^2$$

eine Q-Basis von L bildet und $\zeta^2 + \zeta + 1 = 0$ gilt.

(c) Die echten Zwischenkörper sind gegeben durch

$$L^{\langle (12)\rangle} = \mathbb{Q}(\zeta^2 \sqrt[3]{7})$$

$$L^{\langle (13)\rangle} = \mathbb{Q}(\zeta \sqrt[3]{7})$$

$$L^{\langle (23)\rangle} = \mathbb{Q}(\sqrt[3]{7})$$

$$L^{\langle (123)\rangle} = \mathbb{Q}(\zeta).$$

Aufgabe 2. Es seien p_1, p_2, \dots, p_n paarweise verschiedene Primzahlen. Sei L/\mathbb{Q} ein Zerfällungskörper des Polynoms

$$(X^2 - p_1)(X^2 - p_2) \cdots (X^2 - p_n) \in \mathbb{Q}[X].$$

Zeige, dass L/\mathbb{Q} galoissch ist und bestimme die Galoisgruppe $G(L/\mathbb{Q})$.

Lösung. Wir wollen zunächst zeigen, dass $[L:\mathbb{Q}]=2^n$ gilt. Wir zeigen dies, indem wir induktiv beweisen, dass das Polynom X^2-p_r im Körper $L_{r-1}:=\mathbb{Q}(\sqrt{p_1},\ldots,\sqrt{p_{r-1}})$ keine Nullstelle hat, also anders gesagt, dass das die Primzahl p_r in L_{r-1} keine Quadratwurzel besitzt. Für den Beweis ist es vorteilhaft eine etwas stärkere Aussage zu zeigen, nämlich, dass auch jedes $\frac{p_r}{a}$ mit $a\in\mathbb{N}$ und $\mathrm{ggT}(a,p_r)=1$ in L_{r-1} keine Quadratwurzel hat.

Induktionsanfang: r=1. Eine Zahl $\frac{p_1}{a}$ mit $a\in\mathbb{N}$ und $\operatorname{ggT}(a,p_1)=1$ hat in \mathbb{Q} keine Quadratwurzel. Dies ist klar, denn sei $\frac{u}{v}\in\mathbb{Q}$ ein gekürzter Bruch, also $\operatorname{ggT}(u,v)=1$, dann impliziert $(\frac{u}{v})^2=\frac{p_1}{a}$ schon $u^2=p_1$, da beide Brüche gekürzt sind. Dies steht aber im Widerspruch, zur Annahme, dass p_1 eine Primzahl ist.

Induktionsschritt: $r \rightsquigarrow r+1$. Zu zeigen: Eine Zahl $\frac{p_{r+1}}{a}$ mit $a \in \mathbb{N}$ und $\operatorname{ggT}(a, p_{r+1}) = 1$ hat in L_r keine Quadratwurzel. Per Induktionshypothese, wissen wir, dass $1, \sqrt{p_r}$ eine Basis von L_r/L_{r-1} ist, denn $X^2 - p_r$ ist irreduzibel über L_{r-1} . Sei also $x = y + z\sqrt{p_r} \in L_r$ beliebig mit $y, z \in L_{r-1}$. Dann impliziert die Gleichung $x^2 = \frac{p_{r+1}}{a}$ die Gleichungen

$$y^2 + p_r z^2 = \frac{p_{r+1}}{a}$$
$$2yz = 0.$$

1. Fall: z=0. Dann muss also gelten $y^2=\frac{p_{r+1}}{a}$ was durch die Induktionshypothese ausgeschlossen ist, da $y\in L_{r-1}$, also $\frac{p_{r+1}}{a}$ in diesem Körper keine Quadratwurzel hat. 2. Fall: y=0. Dann muss gelten $z^2p_r=\frac{p_{r+1}}{a}$, also $z^2=\frac{p_{r+1}}{ap_r}$ was wieder durch die Induktionshypothese ausgeschlossen ist, da $z\in L_{r-1}$, also $\frac{p_{r+1}}{ap_r}$ in diesem Körper keine Quadratwurzel hat.

Wir bestimmen nun die Galoisgruppe wie folgt: Wie in der Vorlesung gezeigt, operiert die Galoisgruppe $G(L/\mathbb{Q})$ auf den Nullstellen jedes irreduziblen Faktors $X^2 - p_i$, also erhalten wir einen Homomorphismus

$$G(L/\mathbb{Q}) \longrightarrow S_{\{\pm\sqrt{p_1}\}} \times \cdots \times S_{\{\pm\sqrt{p_n}\}} \cong (C_2)^n$$

und dieser ist injektiv (wenn $\sigma \in G(L/\mathbb{Q})$ alle Nullstellen $\sqrt{p_i}$ fixiert, dann gilt $\sigma = \mathrm{id}$, wie in Vorlesung diskutiert). Nun ist aber $|G(L/\mathbb{Q})| = [L : \mathbb{Q}] = 2^n = |(C_2)^n|$, also muss $G(L/\mathbb{Q}) \cong (C_2)^n$ gelten.

Aufgabe 3. Sei L/K eine Erweiterung endlicher Körper. Zeige: Es gibt ein Element $\alpha \in L$ so dass $L = K(\alpha)$. Tipp: Bestimme per Galoiskorrespondenz alle Zwischenkörper von L/K, und zeige die Existenz von α durch Abzählen derjenigen Elemente von L, welche in echten Zwischenkörpern enthalten sind.

Beweis. Sei $\operatorname{char}(K) = p$, dann gilt $\mathbb{F}_p \subset K \subset L$, also auch $\operatorname{char}(L) = p$. Es genügt nun zu zeigen, dass es $\alpha \in L$ gibt mit $L = \mathbb{F}_p(\alpha)$, dann gilt nämlich natürlich auch $L = K(\alpha)$. Wir verwenden nun, dass die Erweiterung L/\mathbb{F}_p galoissch ist, mit zyklischer Galoisgruppe $G(L/\mathbb{F}_p) = \langle F \rangle$ erzeugt vom Frobeniusautomorphismus F. Per Galoiskorrespondenz gibt es zu jeder Untergruppe von $G(L/\mathbb{F}_p)$ genau einen Zwischenkörper von L/\mathbb{F}_p . Wir haben gezeigt, dass die Untergruppen einer zyklischen Gruppe der Ordnung n genau zu den Teilern von n korrespondieren: Im gegebenen Fall ist jede Untergruppe von $G(L/\mathbb{F}_p)$ von der Form $\langle F^k \rangle$ wobei k|n. Per Galoiskorrespondenz gilt dann für den Fixkörper M von $\langle F^k \rangle$ dass $[L:M]=\frac{n}{k}$ und $[M:\mathbb{F}_p]=k$, also $|M|=p^k$ und damit auch $M\cong\mathbb{F}_{p^k}$. Zusammenfassend gibt es also zu jedem Teiler k|n genau einen Zwischenkörper M von L/\mathbb{F}_p und dieser hat p^k Elemente.

Wir zeigen nun durch ein Abschätzung der Anzahl der Elemente von L welche in echten Teilkörpern enthalten sind, dass die Vereinigung dieser echten Teilkörper nicht ganz L sein kann. Jedes α im Komplement dieser Vereinigung erfüllt dann per Konstruktion $L = \mathbb{F}_p(\alpha)$. Die Abschätzung ist die folgende:

$$|\bigcup_{\mathbb{F}_p \subset M \subset L} M| \le \sum_{\substack{k \mid n \\ k \ne n}} p^k \le \sum_{k=0}^{n-1} p^k = \frac{p^n - 1}{p - 1} < p^n = |L|$$

Aufgabe 4. Sei L/\mathbb{Q} der Zerfällungskörper des Polynoms $X^8-1\in\mathbb{Q}[X]$. Bestimme die Galoisgruppe $G(L/\mathbb{Q})$, das Gitter der Untergruppen von $G(L/\mathbb{Q})$ und die zugehörigen Zwischenkörper von L/\mathbb{Q} .

Lösung. Die Nullstellen des Polynoms $f(X) = X^8 - 1$ in $\mathbb C$ sind die 8-ten Einheitswurzeln. Diese zerlegen sich in eine primitive 1-te Wurzel (1), eine primitive 2-te Wurzel (-1), zwei primitive 4-te Wurzeln (i und -i) und 4 primitive 8-te Wurzeln $(\exp(2\pi i k/4) \text{ für } k = 1, 3, 5, 7)$. Diese Zerlegung korrespondiert zur Faktorisierung von f in seine irreduziblen Faktoren

$$f(X) = (X - 1)(X + 1)(X^{2} + 1)(X^{4} + 1) \in \mathbb{Q}[X],$$

welche genau die m-ten Kreisteilungspolynome für m=1,2,4,8 sind. Aber dies haben wir erst nach dem Übungszettel in der Vorlesung besprochen, die obige Zerlegung, und die Tatsache, dass X^4+1 irreduzibel ist, rechnet man einfach direkt nach: Da X^4+1 keine Nullstelle in \mathbb{Q} (sogar \mathbb{R}) hat, ist die verbleibende Möglichkeit, dass sich X^4+1 als Produkt von irreduziblen Polynomen in $\mathbb{Z}[X]$ (Gauss-Lemma) vom Grad 2 schreiben lässt, also als $(X^2+aX+b)(X^2+cX+d)$. Dies impliziert:

$$a + c = 0$$

$$ac + d + f = 0$$

$$df = 1$$

Auflösen der Gleichungen zeigt, dass $a^2=\pm 2$ gelten muss, ein Widerspruch, so dass X^4+1 irreduzibel ist.

Mit $\zeta=\exp(2\pi i/4)$ ist also der Zerfällungskörper $L=\mathbb{Q}(\zeta)/\mathbb{Q}$ primitiv wobei das Minimalpolynom von ζ genau X^4+1 ist, also $L\cong\mathbb{Q}[T]/(T^4+1)$. Es gibt demnach also für jede der Nullstellen $\zeta,\zeta^3,\zeta^5,\zeta^7$ genau einen Automorphismus $\sigma\in G(L/\mathbb{Q})$, eindeutig bestimmt durch $\sigma(\zeta)=\zeta^k,\ k=1,3,5,7$. Es folgt zunächst eine Bijektion von Mengen $G(L/\mathbb{Q})\cong\{1,3,5,7\}=(\mathbb{Z}/8\mathbb{Z})^*$ welche aber auch ein Gruppenhomomorphismus ist, denn es gilt für $\sigma(\zeta)=\zeta^k$ und $\tau(\zeta)=\zeta^l$, dass $\sigma\tau(\zeta)=\zeta^{kl}$.

Weiterhin ergibt direktes Nachrechnen $(\mathbb{Z}/8\mathbb{Z})^* \cong C_2 \times C_2$. Also ist die Galoisgruppe von L/\mathbb{Q} isomorph zur Kleinschen Vierergruppe.

Die nichttrivialen Untergruppen der Galoisgruppe sind die drei zyklischen Gruppen der Ordnung 2 erzeugt von 3, 5, und 7. Die zugehörigen Zwischenkörper, welche also quadratische Erweiterungen von \mathbb{Q} sein müssen, lassen sich zum Beispiel beschreiben als $\mathbb{Q}(\zeta + \zeta^3) = \mathbb{Q}(\sqrt{-2}), \ \mathbb{Q}(\zeta\zeta^5) = \mathbb{Q}(i), \ \mathbb{Q}(\zeta + \zeta^7) = \mathbb{Q}(\sqrt{2}).$